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ABSTRACT: A systematic study, by means of full electrodynamic
calculations, of the optical activity of layer-by-layer chiral crystals of finite
silver nanorods is presented. The nature of the eigenmodes of the
electromagnetic field and the formation of partial gaps for a specific
circular polarization in these crystals are analyzed by reference to the
hybrid plasmon modes of the structural basis of twisted nanorods. It is
shown that collective plasmon modes of the helical assembly give rise to
giant optical activity effects, which persist for any angle of incidence and
polarization direction. The effects, which are robust against the twisting
angle and become more pronounced with increasing particle concen-
tration, can be tuned within a broad range of frequencies in the infrared
and visible spectrum by appropriately choosing the rod length. Potential
applications of these structures for polarization control in subwavelength
optical components are anticipated.

■ INTRODUCTION

Collective chirality and the associated optical activity in
nanostructures, including chiral assemblies of nonchiral
particles, either randomly distributed in solution or periodically
arranged on a crystal lattice, attract increasing interest in recent
years. Natural chiral molecules such as proteins and DNA show
considerable optical activity in the ultraviolet and infrared
ranges owing to the electronic and vibrational excitations of
their chiral secondary structure.1 Cholesteric liquid crystals
exhibit strong circular dichroism and singular dispersion of the
rotatory power due to a circular Bragg phenomenon, that is, a
strong reflectance only for circularly polarized light of the same
handedness as that of the physical structure of the chiral
medium.2 This effect suggests potential for use of these crystals
in numerous applications, such as low-threshold mirrorless
lasing, circularly polarized emission,3 and compact thin-film
optical diodes.4 Optical activity of artificial helical nanostruc-
tures has been addressed in the context of photonic crystals,5

and advances in fabrication techniques allowed for the
realization of a diversity of thin-film and bulk chiral structures
that exhibit enhanced optical activity and sizable partial
photonic band gaps for just one of the two circular
polarizations.6−14

Artificial plasmonic architectures consisting of either chiral
metallic building units15−22 or nonchiral metallic nanoparticles
arranged in chiral geometries such as pyramids, tetrahedra,
helices, and so on23−27 provide unique opportunities to achieve
extraordinary optical activity effects, which can be tuned within
a wide range from near-infrared to ultraviolet frequencies and

offer impressive possibilities, among others, in the design of
subwavelength components for polarization-control applica-
tions in miniaturized optical devices. In the case of nanoparticle
complexes, these strong effects originate most often from
collective plasmon−plasmon interactions of the nanoparticles,
whereas assembling such chiral plasmonic metamolecules into
periodic structures28−30 enriches the possibilities for tailoring
their optical response. In particular, it has been reported that a
robust particle-plasmon-mediated circular dichroism is obtained
for a chiral complex bearing elongated particles, which are
oriented along a helix.26 Research on chiral plasmonic
architectures is at the frontier of nanophotonics also because
of potential applications in biology,31 chemistry,32,33 and optics
of novel metamaterials.34 These structures can be realized in
the laboratory using modern nanofabrication methods like
lithography,15−22,28−30 molecular self-assembly,35,36 and DNA-
and peptide-directed assembly,37−39 whereas, recently, the
potential of the DNA origami approach for the programmable
and nanometer-precise design of helical assemblies of metallic
nanoparticles was also demonstrated.40,41

In previous work on a specific design of a spiral-staircase
layer-by-layer structure of metallic nanorods studying negative
refraction, we revealed the occurrence of strong optical activity
for light of specific polarization incident normal to the layers.42

In the present article, we go further in this direction and report
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a thorough investigation of the optical activity in this class of
3D helical periodic structures by means of rigorous full
electrodynamic calculations using the layer-multiple-scattering
(LMS) method,43−45 properly extended to describe axis-
symmetric particles with arbitrary orientation. Photonic band
diagrams along an arbitrary direction, in conjunction with
relevant polarization-resolved transmission spectra, are analyzed
by reference to the hybrid plasmonic orbitals47 of the chiral
nanorod complex that constitutes the basis of the crystal
structure. Subsequently, circular dichroism and birefringence
effects within the visible spectrum are systematically studied for
a series of such structures with a different number of nanorods
per primitive unit cell and volume fraction occupied by the
nanorods by varying the angle of incidence and polarization
direction of the incoming wave.

■ METHOD OF CALCULATION
Our calculations are based on the full-electrodynamic LMS
method,43−45 which is ideally suited for stratified structures
consisting of successive layers of nonoverlapping particles
(scatterers) of arbitrary shape, arranged with the same 2D
periodicity in the x−y plane, whereas periodicity in the z
direction is not a prerequisite. The method solves Maxwell
equations in the frequency domain, and thus dispersion and
absorptive losses in the constituent materials can be readily
included. Besides the complex photonic band structure of an
infinite crystal, associated with a given crystallographic plane,
the LMS method can also provide the reflectance, trans-
mittance, and absorbance of a finite slab of the crystal at any
angle of incidence, and, in this respect, it can describe an actual
transmission experiment.
In the spirit of the multiple-scattering approach, the

scattering properties of the entire composite structure are
obtained from those of its constituent building units. At a first
step, in-plane multiple scattering is described in a spherical-
wave basis using the scattering T matrix of the individual
scatterers and appropriate propagator functions. For particles of
cylindrical symmetry and arbitrary orientation, such as the
nanorods that we consider in the present work, the T matrix is
first calculated by the extended-boundary-condition method in
a coordinate system defined by taking the z axis along the
particle axis; then, it is transformed into the actual coordinate
system using the relevant transformation matrices for the
appropriate Euler rotation angles.46 Very good convergence of
the calculations in all cases we studied here is obtained if we
truncate the spherical-wave expansion at lmax = 8 and evaluate
the single-particle scattering T matrix with lcut = 15 and a
Gaussian quadrature integration formula with 1024 points.45,46

In a second step, interlayer coupling is fully taken into account
by properly combining the transmission and reflection matrices
of the component layers, so as to describe multiple scattering
between the layers to any order in a plane-wave representation
defined as follows. The component of the wavevector of the
incident plane wave parallel to the layers, q∥, is written as q∥ =
k∥ + g′, where k∥, the reduced wavevector in the surface
Brillouin zone, is a conserved quantity in the scattering process
and g′ is a certain reciprocal vector of the given 2D lattice.
Therefore, the wavevector of the incident wave has the form Kg′

±

= k∥ + g′ ± [q2 − (k∥ + g′)2]1/2eẑ, where q is the wavenumber,
eẑ is the unit vector along the z axis, and the + or − sign refers
to incidence from z < 0 or from z > 0, that is, a wave
propagating toward the positive or negative z direction,
respectively. Because k∥ and the angular frequency ω are

conserved quantities in the elastic scattering process, the
scattered field consists of a series of plane waves with
wavevectors Kg

± = k∥ + g ± [q2 − (k∥ + g)2]1/2eẑ, ∀g, and
polarizations along e1̂ and e2̂ (polar and azimuthal unit vectors,
respectively, associated with every Kg

±). Corresponding
circularly polarized plane waves are defined by the unit vectors
eL̂ = (e1̂ + ie2̂)/2

1/2 and eR̂ = (e1̂ − ie2̂)/2
1/2 for left circular

polarization (LCP) and right circular polarization (RCP),
respectively. It is worth noting that although the scattered field
consists, in general, of a number of diffracted beams
corresponding to different 2D reciprocal lattice vectors g,
only beams for which Kgz

± is real constitute propagating waves.
When (k∥ + g)2 > q2, we have an evanescent beam, and the
corresponding unit vectors e1̂, e2̂ become complex, but they are
still orthonormal: ep̂·ep̂′ = δpp′,p(p′) = 1,2. Taking into account
in the calculations 89 2D reciprocal lattice vectors ensures good
convergence in all of the cases we studied in the present work.
The ratio of the transmitted or reflected energy flux to the

energy flux associated with the incident wave defines the
transmittance or reflectance, respectively, of a multilayer slab.
For a 3D crystal consisting of an infinite periodic sequence of
layers, stacked along the z direction, applying the Bloch
condition for the wave field in the region between two
consecutive unit slabs leads to an eigenvalue equation, which
gives the z component of the Bloch wave vector, kz, for the
given ω and k∥. The eigenvalues kz(ω,k∥), looked upon as
functions of real ω, define, for each k∥, lines in the complex kz
plane. Taken together, they constitute the complex band
structure of the infinite crystal associated with the given
crystallographic plane. A line of given k∥ may be real (in the
sense that kz is real) over certain frequency regions and be
complex (in the sense that kz is complex) for ω outside these
regions. It turns out that for given k∥ and ω, out of the
eigenvalues kz(ω,k∥), none or, at best, a few are real, and the
corresponding eigenvectors represent propagating modes of the
electromagnetic (EM) field in the given infinite crystal. The
remaining eigenvalues kz(ω,k∥) are complex, and the
corresponding eigenvectors represent evanescent waves.
These have an amplitude that increases exponentially in the
positive or negative z direction and, unlike the propagating
waves, do not exist as physical entities in the infinite crystal.
However, they are an essential part of the physical solutions of
the EM field in a slab of finite thickness. A region of frequency
where propagating waves do not exist, for given k∥, constitutes
a frequency gap of the EM field for the given k∥. If over a
frequency region no propagating wave exists whatever the value
of k∥, then this region constitutes an absolute frequency gap.

■ FORMATION OF HYBRID PLASMON MODES

We consider layer-by-layer structures of metallic nanorods of
length L, with a circular cross section of diameter D, stacked
along the z direction. In each layer, the nanorods are centered
at the sites of a square lattice, of lattice constant a, with their
axes aligned in a direction perpendicular to the z axis. The
nanorods in consecutive layers are mutually twisted through an
angle φ (φ = π/2, π/3, π/4) and are separated by a distance h,
equal to one tenth of their diameter, as shown in Figure 1.
Therefore, the period d of the structure along the z direction
comprises N = π/φ layers and d = 1.1ND. To begin with, we
shall describe the metallic material by the simple yet effective
Drude dielectric function48
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where ωp is the bulk plasma frequency and τ is the relaxation
time of the conduction band electrons, and take D = c/ωp, L =
2.5c/ωp, and a = 7.5c/ωp. We note that assuming ℏωp ≅ 10 eV,
the diameter of the nanorods, D, corresponds to ∼20 nm and
their length, L, corresponds to ∼50 nm.
The nature of the eigenmodes of the EM field in these

structures can be better understood by reference to appropriate
hybrid plasmon modes of the structural basis of twisted
nanorods. The formation of these modes can be explained by a
simple model of interacting point dipoles, which enables
physical insight, as follows. The optical response of a metallic
nanorod is characterized by a predominant resonance, which
stems from the excitation of the fundamental dipole-like
plasmon mode associated with free-electron oscillations along
the nanorod axis (longitudinal mode). About the eigenfre-
quency of its longitudinal dipole particle-plasmon mode, a
metallic nanorod can be assimilated to a point dipole oscillating
in the direction of the rod axis. The electric field at r = rr ̂ from a
point dipole p that oscillates with an angular frequency, ω,
assuming an exp(−iωt) time dependence is49
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Therefore, for a collection of N dipoles pj at sites Rj = (0,0,zj), j
= 1,...,N, oscillating normal to the z axis, the electric field on the
ith dipole, created by all other dipoles, is given by
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The dipole moment in the direction of the rod axis is given by
the product of the longitudinal element of the particle electric
polarizability tensor, α∥, and the component of the electric field
along this direction

α= · ̂p E pi i i (5)

Unfortunately, no closed-form expressions exist for the
polarizability of a rod. However, it has been shown by means
of numerical calculations that the polarizability of a rod is close
to that of a spheroid with the same aspect ratio and
permittivity, that is50
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where V is the volume of the particle and L∥ (0 < L∥ < 1) is the
longitudinal depolarization factor. The eigenfrequency, ω0, of
the longitudinal dipole particle-plasmon mode of a single
nanorod is determined from the condition α∥

−1(ω0) = 0. For
example, if we assume that εm(ω) has the simple Drude form of
eq 1 without dissipative losses (τ−1 = 0), then we obtain ω0 =
(L∥)

1/2ωp. The scattering and absorption cross sections of a
single nanorod made of a Drude metal, with D = c/ωp and L =
2.5c/ωp, and also of a corresponding nanorod made of actual
silver (D = 20 nm and L = 50 nm) have been presented and
analyzed in detail elsewhere.51 They are characterized by a
strong resonance at ω0 = 0.3ωp or ℏωp = 2.5 eV, respectively,
that stems from the excitation of the fundamental longitudinal
plasmon mode, from which we deduce L∥ = 0.09.
For three interacting nanorods, separated by a distance R = D

+ h (= 1.1c/ωp) and mutually twisted through an angle φ = π/3
as shown in Figure 1, eqs 3 and 5 lead to a linear system of
equations, which can be cast into the form of an eigenvalue
problem

where f1(ω) = (V/4π)f(ω,R) cos φ and f 2(ω) = (V/4π)f(ω,2R)
cos 2φ. The eigenvalues and eigenvectors of the matrix on the
left-hand side of eq 7 are analytically given by: [f 2(ω) −
(8f1

2(ω) + f 2
2(ω))1/2]/2, −f 2(ω), [f 2(ω) + (8f1

2(ω) +
f 2
2(ω))1/2]/2, and (1,[−f 2(ω) − (8f1

2(ω) + f 2
2(ω))1/2]/

2f1(ω),1)
T, (1,0,−1)T, and (1,[−f 2(ω) + (8f1

2(ω) +
f 2
2(ω))1/2]/2f1(ω),1)

T, respectively. Setting these eigenvalues
equal to 0.09 − (ω/ωp)

2, we obtain the eigenfrequencies and
the associated hybrid plasmon modes of the three-nanorod
helical metamolecule, shown in Figure 1. It can be seen that
interaction between the nanorods leads to the formation of
three distinct hybrid modes: one of LCP-like character, one of
RCP-like character, and one with no specific circular-polar-
ization character. It is also worth noting that these modes have
a finite lifetime because of radiative losses.
Similarly, for four interacting nanorods, mutually twisted

through an angle φ = π/4, we obtain four hybrid modes: one of
LCP-like character, one of RCP-like character, and two with no
specific circular-polarization character, whereas for a pair of
nanorods, mutually twisted through an angle φ = π/2, neither
of the two hybrid modes formed has a specific circular-
polarization character.

Figure 1. Unit cell of a tetragonal structure with a basis of three
mutually twisted metallic nanorods and a schematic view of the
formation of hybrid plasmon modes in the three-nanorod helical
metamolecule. The bottom left diagram shows the variation of the
eigenfrequencies of these modes as a function of the interparticle
distance, as obtained by the point−dipole model described in the text.
The calculated imaginary part of the eigenfrequencies is on the order
of 10−3ωp.
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■ PHOTONIC BAND STRUCTURE AND
TRANSMISSION SPECTRA

In Figure 2, we display photonic dispersion diagrams of the
three crystals under consideration for k∥ = (0.25,0)2π/a,

calculated by deliberately disregarding absorptive losses taking
τ−1 = 0 in eq 1 to ensure an unambiguous interpretation. Along
an arbitrary direction of the Brillouin zone, such as the one we
consider here, all bands are nondegenerate because they belong
to the identity representation of the trivial group and thus they
cannot be classified as of purely LCP or RCP character.
However, there is a different degree of LCP and RCP
admixture that varies along a specific band (see middle and
bottom band diagrams of Figure 2), except for the case of φ =
π/2 (top band diagram of Figure 2), where chirality is absent
and the bands have no predominant circular-polarization
character. The circular-polarization character of a given Bloch
mode, presented by the color scale in Figure 2, is defined by
projecting the corresponding eigenvector43−46 onto the basis
spanned by the LCP and RCP states, associated with eL̂ and eR̂,
respectively. The dispersion diagrams of Figure 2 are
characterized by the presence of two extended bands,
associated with photons of two transverse orthogonal polar-
izations propagating in an underlying effective medium, and a
number of relatively narrow bands, as many as the number of
nanorods per primitive cell, formed by the interacting
molecular plasmonic orbitals, which stem from the fundamental
longitudinal dipole-like plasmon modes of the individual
nanorods, as described in the previous section. Symmetry
compatibility allows for anticrossing interaction between the
bands, which always takes place to a major or minor degree
depending on the shape of the modes involved and leads to the
appearance of frequency gaps. In a chiral structure, the two
extended effective-medium bands and two of the narrow
plasmonic bands have a predominant circular-polarization

character, one of each being LCP-like and one RCP-like.
Anticrossing interaction between extended and narrow bands of
the same character leads to strong level repulsion and
consequent sizable frequency gaps for a specific polarization,
as can be seen in the middle and bottom band diagrams of
Figure 2.
Characterizing the band eigenmodes by their degree of LCP

and RCP admixture allows for a consistent interpretation of
corresponding transmission spectra of finite slabs, as shown in
the right-hand diagrams of Figure 2. Modes with a certain
predominant circular-polarization character and positive
(negative) group velocity couple predominantly to a plane
EM wave with the same polarization, incident along the positive
(negative) z direction on a (001) slab of the crystal, with the
same k∥. As shown in the middle and bottom transmission
diagrams of Figure 2, over the frequency range of a polarization
gap, only incident waves of opposite handedness are allowed to
pass through. Of course, for the crystal with a basis of two
nanorods where chirality is absent, the transmission spectra for
LCP and RCP incident light are the same. In a terminology
similar to that introduced by Hodgkinson et al.53 in relation to
chiral layered structures of homogeneous anisotropic plates,
this crystal can be classified as an equichiral layered structure,
whereas the crystals with a basis of three and four nanorods can
be classified as ambichiral layered structures. It is worth noting
that the position of the circular-polarization spectral gaps,
which are relevant here, is determined by the localized particle-
plasmon modes and thus can be easily tuned by changing the
rod length,51 contrary to the circular Bragg gaps in, for example,
cholesteric liquid crystals and chiral sculptured thin films, which
appear at wavelengths commensurate with the lattice constant.

■ OPTICAL ACTIVITY
The polarization state of a wave transmitted through a finite
slab of the crystals under consideration can be directly obtained
from the corresponding transmission matrix. It is worth noting
that the frequency region of interest is below the diffraction
limit for light incident on the (001) surface of these crystals, at
any angle, as appropriate for the metamaterial regime.
Therefore, only the zero-order diffraction channel yields a
propagating beam, and the (electric-field) amplitude of the
transmitted wave is obtained from that of the incident wave
through a 2 × 2 complex transmission matrix, t, as follows: Ep

tr =
Σp′tpp′Ep′

in, where p(p′) = 1,2 refers to linearly polarized waves
with the electric field oscillating in or perpendicular to the plane
of incidence, respectively, in accordance with the plane-wave
basis, spanned by the unit vectors e1̂ and e2̂, employed in the
LMS method. We note that at normal incidence on the (001)
surface of the crystal, these polarization directions coincide with
the x and y axes, respectively. One can easily switch from this
basis of linearly polarized waves [p(p′) = 1,2] to the basis of
circularly polarized waves [p(p′) = L,R] with the help of a
similarity transformation
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An incoming plane wave of amplitude E0, propagating along
the positive z direction, linearly polarized at an angle ϕ0 with
respect to the e1̂ axis, can be decomposed into LCP and RCP
waves of amplitudes EL

in = E0 exp(−iϕ0)/2
1/2 and ER

in = E0
exp(iϕ0)/2

1/2, respectively. The corresponding transmitted
fields have amplitudes EL

tr = E0/2
1/2[tLL exp(−iϕ0) + tLR

Figure 2. Photonic band structure of the crystals under study with a
basis of two (top diagram), three (middle diagram), and four (bottom
diagram) metallic nanorods per unit cell, arranged as shown in Figure
1 for a specific case, for k∥ = (0.25,0)2π/a. The dielectric function of
the metal is described by the Drude model without dissipative losses
(eq 1 with τ−1 = 0), and the geometric parameters of the structures
are: D = c/ωp, L = 2.5c/ωp, and a = 7.5c/ωp. Next to the band
diagrams, we depict corresponding transmission spectra of (001) slabs
of these crystals, 12-layers thick, for LCP and RCP light incident along
the positive z direction if we consider silver nanorods described by the
experimental dielectric function of bulk silver52 and geometric
parameters of the structures: D = 20 nm, L = 50 nm, and a = 150 nm.
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exp(iϕ0)] and ER
tr = E0/2

1/2[tRLexp(−iϕ0) + tRR exp(iϕ0)],
which correspond to an in general elliptically polarized wave
with the long axis of the ellipse forming an angle

ϕ = −E E
1
2

[arg( ) arg( )]R
tr

L
tr

(9)

with the e1̂ axis and with ellipticity angle

χ =
| | − | |
| | + | |
E E
E E

arctan R
tr

L
tr

R
tr

L
tr

(10)

as shown in Figure 3. We adopt the polarization azimuth
rotation angle, Δϕ = ϕ − ϕ0, as a measure of circular
birefringence and the ellipticity angle, χ, as a measure of circular
dichroism.

It is worth noting that, contrary to the situation under, for
example, a four-fold rotation symmetry, in our case there is
polarization conversion because tLR and tRL do not vanish
identically. As a result, Δϕ and χ vary with the polarization
angle ϕ0 in an oscillatory manner, with a period of 180°. In
Figure 3, we display the calculated polarization-averaged
ellipticity and azimuth rotation angles of a wave transmitted
through a (001) unit slab of the crystals with a basis of three
and four nanorods (three- and four-layers thick, respectively)
for different angles of incidence. In the former (latter) case, the
polarization-averaged ellipticity angle vanishes at ℏω =
2.46(2.54) eV, for all different angles of incidence, which
indicates a pure optical activity effect. At this frequency, the
polarization-averaged azimuth rotation of the transmitted wave
decreases from 10.8° (14.4°) at normal incidence to 6° (8°) for
incidence at an angle of 60°. In terms of rotatory power per
sample thickness equal to one wavelength, the optical activity of
the considered unit slabs can be as large as 83° (80°), which is
by several orders of magnitude larger than that of naturally
occurring optically active materials and comparable to that of

other chiral metamaterials,22,54 whereas transmission losses are
relatively low, typically a few decibels. Stronger optical activity
effects are obtained for more dense structures. For example, the
rotatory power becomes twice larger if the lattice constant a is
reduced from 150 to 100 nm. It is also worth noting that the
spectral response can be tuned in a controllable manner by
choosing the rod length so as to shift its plasmon resonance
appropriately.51

■ CONCLUSIONS
In conclusion, we reported a systematic study of the optical
properties of a series of layer-by-layer chiral periodic structures
consisting of twisted silver nanorods. We analyzed photonic
band diagrams of these crystals in conjunction with relevant
polarization-resolved transmission spectra of corresponding
finite slabs and explained the formation of partial gaps for a
specific circular polarization, by reference to the hybrid
plasmon modes of the structural basis of twisted nanorods.
We demonstrated the occurrence of giant optical activity
effects, which can be tuned within the infrared and visible
spectrum by appropriately choosing the rod length and persist
for any angle of incidence and polarization direction. These
effects do not strongly depend on the twisting angle of the
nanorods and become more pronounced with increasing
particle concentration. All of these features, along with
relatively low transmission losses, make few-layer slabs of
these crystals promising candidates for practical applications as
ultrathin circular polarizers and polarization rotators. Because
of the localized nature of the plasmon modes and the strong
chiral response of the structures under consideration along any
direction, enhanced optical activity effects should also be
expected for helical complexes of metallic nanorods randomly
distributed in solution.
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described by the experimental dielectric function of bulk silver,52 and
the geometric parameters of the structures are: D = 20 nm, L = 50 nm,
and a = 150 nm.
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