POSITIVE

Contact information: www.fp7positive.eu

A highly integrated and sensitive POrous SIlicon based lab on a chip for multiple quantitaTIVE monitoring of Food allergies at point of care.

D. Hill¹, J. Alvarez¹, P. Bettotti², K. Gylfasson³, G. Skorski⁴, M. Swann⁵

- ¹Institut de Ciència dels Materials, Universitat de Valencia, Valencia, Spain
- ²Nanoscience Laboratory, University of Trento, Trento, Italy
- ³Microsystem Technology Lab, KTH-Royal Institute of Technology, Stockholm, Sweden
- ⁴Phylogene SA, Bernis, France
- ⁵Farfield Group Ltd, Manchester, United Kingdom

Keywords:

Lab on a chip
Rapid cost-effective multiplexed biochip
integrated sample preparation
Microfluidic

Porous silicon portable label-free multiallergy diagnostic biomolecular recognition optical sensor

csem

UNIVERSITY OF TRENTO - Italy

DEPARTMENT OF PHYSICS Nanoscience Laboratory

Consiglio Nazionale delle Ricerche

About food allergies

Food allergies – sensitization to food products

Life threatening:

Can provoke clinical reactions (e.g. anaphylaxis), with respiratory and/or cardiovascular problems that might result in death.

- 8% of children
- Over 15 million people in Europe.
- Increasing prevalence.

Current diagnostic technology:

- Skin prick test limited.
- Alternatives tests are blood/lab based FEIA, RAST and ELISA
- PoC devices only a few allergens per test, at most a semi-quantitative determination.

POSITIVE technology:

100µL whole blood sample Sensitization determination to 0.1kU/L (0.24ng/ml) for 10 food allergies in 15'

A highly integrated and sensitive POrous Sylicon based lab on a chip for multiple quantitaTIVE monitoring of Eood allergies at point of care

Increasing importance of <u>nanoporous membranes</u> in sensing applications:

- ✓ Typical length scales maximise formation of bioassay.
- ✓ Enhance response of sensor over planar sensors.
- ✓ Selective size filtering.

Sensing performance directly correlated to quality/reproducibility of structures.

Examples: (Porous silicon....porous alumina.)

A highly integrated an sensitive POrous Slicon base lab on a chip for multip quantitaTIVE monitoring of Eood allergies at point of care

A highly integrated and sensitive POrous Sylicon based lab on a chip for multiple quantitaTIVE monitoring o Food allergies at point of care

Resist. $> 1 \Omega cm$

Low porosity, branched pores

Resist. = $0.1 \Omega cm$

Optimal pore size, low porosity

Resist. = $0.01 \Omega cm$

Good pore size & porositiy
Optimal etching conditions → high control over etching process

Solution	Etching rate (um/s)	Pore size (nm)	Refractive index	Membrane thickness
a%HF + b% Ethanol	0.06	50 - 60	2.8135	20
c% HF + d% Ethanol + e% H ₂ O ₂	0.05	30 – 40	2.7862	10
f% HF + g% Ethanol	0.04	70 - 80	1.9279	10

Extremely thin free standing membranes can be realized, down to 3 µm thick and area of around 1 cm².

Greatly dependent on:

1.Etchant solution composition – varied at will.

2.Starting material - limited

[100] n-type commonly 0.01 Ω cm or 0.001 Ω cm, but not 0.1 Ω cm

[111] n-type commonly 0.001, 0.01, 0.1 Ω cm

→ but [111] has no optical anisotropy

Need a larger variety of substrate types on the market to develop OPTIMIZED biosensors

Furthermore nanoporous membranes are of great interest for many analytical uses e.g. DNA translocation!

PorSi Advantages:

- High refractive index
- Flexible pore tunability
- Well known chemistry
- Good chemical resistance
- No intrinsic photoluminescence

PorSi Disadvantages:

- Rough internal pore surfaces (difficult fluidics)
- Pore size dispersion

PorAl Advantages:

- Smoother pore surface
- Monodisperse pores size
- Higher optical transparency in the Vis range

PorAl Disadvantages:

- Low refractive index
- Intrinsic photoluminenscence (no labelled assay, no Raman analysis)
- Lower stability in biological environment

(2) Polymer to silicon packaging

To convey advantages of membrane to LoC world for:

- sensing,
- filtering,
- bioassay scafffoling etc

need <u>suitable/cost-effective chip technology</u> e.g. a novel polymer to Si packaging technologies (RHS).

- •Biochips 15×15×1 mm³ microfluidic OSTE(+) chips, with 6 mm diameter, 30 µm thick porSi membranes (50% porosity, 70 nm pore size) bonded. [1].
- •Spin-out Mercenelabs (www.mercenelabs.com) is currently commercializing the novel polymer used.
- [1] Saharil, F. Gylfason, K.B.; Liu, Y.; Haraldsson, T.; Bettotti, P.; Kumar, N.; van der Wijngaart, W. "Dry transfer bonding of porous silicon membranes to OSTE(+) polymer microfluidic devices", MEMS 2012, Paris

(3) Blood filtering technology

In Positive filter paths quickly blocked by solids. Instead:

- Guided flow along large area commericial membrane filters.
 - -> several 100 ul of whole blood filtered and plasma generated for subsequent analysis.
 - -> Low cost implementation for Positive and ?

Analysis of the supply chain

Two discrete items in product supply chain.

- Reader supply/distribution chain is of that of a conventional system and is well established in the market.
- Diagram shows the supply chain for the consumable device/associated reagents.

Analysis of the supply chain

Companies serving the different steps and identification of gaps:

> Chip Processing

Highly volume dependent.

Different suppliers, slightly different ranges of processes, how generic are the process steps?

- Small scale batch silicon semiconductor processing and device packaging. Tyndall, Cork, Ireland.
- Medium scale silicon semiconductor processing and device packaging. INEX, Newcastle, UK
- Porous Chip Manufacture. SmartMembranes GmbH, Halle, Germany.

> Fluidic Cassette

- Filter Membrane Suppliers Millipore Corporation, Billerica, MA, USA. Whatmann- GE Healthcare.
- Microfluidic Laminated components –Epigem, UK

Biologicals

Protein Array Spotting - Biotools B&M Labs, S.A.

A highly integrated and sensitive POrous Silicon based lab on a chip for multiple quantitaTIVE monitoring of Eood allergies at point of care

Analysis of the supply chain

Supply chain problems (e.g. lack of standard, common language, interest, etc).

- 1. Semicon manufacturing by 'recipes', don't understand/have control outside:
 - No economic supply of wafers for membrane production with reproducible properties.
- 2. Biological reagents from different suppliers and even from batch to batch at same supplier will vary in quality and concentration
 - individual batches will need to be verified on a 'standard Positive platform', or the assay has to be designed to accommodate this variation.
- 3. Quality control in spotting of all 'wells' in each biochip (miss one and chip needs be rejected).
- 4. Spotted biochips may fail in tests at limit of specification.
- 5. Lack of standards, for quantifying biosensor performance and characterisation.
- 6. Lack of standards, only guidelines for activity differences between IgG and IgE.
- 7. General process development for reproducible and in specification, consumables.
- 8. General miscomprehension due to different meanings of terminology from biology to medicine, physics and chemistry.

POSITIVE

Contact information: www.fp7positive.eu

Thank you for your attention!

And thank you to

All of the Positive team.

This work was financed by FP7 (Positive), #257401.

