

Project coordinator
Center for Sensory-Motor Interaction
Aalborg University
Denmark

wj@hst.aau.dk

FP7 - ICT-2007.3.6 Micro/Nanosystems priority project number 224012

Concept of project TIME

Phantom pain

In 50-80% of amputees neuropathic pain develops in the lost limb, called **phantom limb pain**.

Our aim is to develop a Human Machine Interface (HMI) to manipulate phanthom limb pain by applying electrical stimulation through implanted electrodes in the peripheral nerve

Why does phantom limb pain occur? Neurological changes after amputation

Central changes include

- Unmasking
- Sprouting
- General disinhibition
- Map remodelling
- · Loss of neurons and neuronal function
- Denervation
- Alterations in neurnal and glial activity
- Sensory-motor and motor-sensory incongruence

Peripheral changes include

- Structural changes in neurons and axons
- Ectopic impulses
- Ephaptic transmission
- Sympathetic-afferent coupling
- Alteration in channels and transduct molecules
- Selective loss of unmyelinated fibers

Project background

Examples of phantom limb pain management

Neural blockades

Epidural anaesthesia (non-lasting effect)
Regional anaesthesia (non-lasting effect)

Drug therapy

• Ketamine, lidocaine, calcitonin (non-lasting effect)

Neurostimulation

Transcutaneous electrical nerve stimulation (variable results)

Spinal cord stimulation (variable results)

Deep brain stimulation (variable results)

Other

- Physical therapy mirror box, use of prosthetic devices, virtual reality
- · Acupuncture, Electroacupuncture
- Electroconvulsive therapy
- Psychological therapy relaxation training, hypnosis
- Neurosurgical techniques
- Biofeedback

There are currently no effective, long-lasting treatments available for the treatment of phantom limb pain, which is a further cause of disability and loss of quality of life

Project background

TIME hypothesis

There is evidence in the litterature that the cortical organization (or mapping) changes following amputation

Hypothesis: The transected nerve sends uncoordinated information to the brain – decoding of information in the brain is complicated by change in the motor/somatosensory mapping

Plasticity

Changes in the strength of synaptic connections in response to either an environmental stimulus or an alteration in synaptic activity in a network.

Project background

TIME hypothesis

By providing adequate patterns of stimulation to the transected afferent nerves central reorganization may be restored, and a normal processing of sensory signals recovered

TIME prototype system chosen for evaluation in human volunteer

Market potentials for the 'TIME prototype system' Patient population in Europe /US

Tech developments for 'TIME prototype system' needed to bring complete system to market

Human - short term (e.g. **Interoperative** testing or short term implants)

Within project lifetime

Human - long-term **Full system implant** Large scale clinical tests Beyond project-lifet

time

Within project life time

- From R&D to the clinic: further clinical testing, putting technology to the market
- Design of patient-specific syste: Fitting & manufacturing of optimal electrode, choice of effective stimulation paradigm
- Robotic support for a safer and less invasive electrode implantation

Animal/

non-clinical research

- **Signal transmission:** Wireless transmission of large amount of data (or implantable, micro-scale computing power
- **Power:** Providing long-term power (yrs) or selfpowered systems
- Biocompatibility and robustness: life-long system

TIME prototype system chosen for evaluation in human volunteer: Non-corrugated TIME-3H Electrode

Features	TIME-3H
	Human
# electrodes	18
indifferent	No
ground dimensions	1 x 0.25mm ²
pitch	400 μm
width	350 µm
width in mid line	120 μm
Ø active sites	80 µm
electrode coating	IrOx
charge injection capacity	3.8 mC/cm ² (190nC)
track width & pitch	15 µm
cable	Helical, flexible
Stabilization	Anchor holes 90 deg bend
connector	Omnetics
Implant method	Commercial ethicon needle

Motivation for the choice of non-corrugated TIME-3H electrodes:

- Major tests performed integration of knowledge from in-vivo, in-vitro and modelling work
- Design change in yr 2 (use of IrOx as active material) required repetition of the biocompatibility testing
- Omnetics connector has been used in chronic animal experiments and is robust, small and light weight (commercial connector)

TIME prototype system chosen for evaluation in human volunteer: Bench-top STIM'nD stimulator

Features	STIMn'D
# independent configurable channels	12
Max current amplitude	5 mA (step size: 5 uA)
Pulse duration	1-511 µs (step size: 1us)
Pulse waveform	Arbitrary
Control mode	SENIS manager Or SEC manager (Physchophysical testing platform)
Configuration	Each channel can be configured as anode or cathode or shunt to VHt

Motivation for the choice of STIM'nD:

- offers the same stimulation functionalities as the minaturized version
- offers the same safety level as the minaturized version
- has been tested in animal experiements and toghether with the psychophysical testing platform

TIME prototype system chosen for evaluation in human volunteer: Psychophysical testing platform

Features	Psychophysical testing platform
ISI subsystem	Measure perception threshold Measure sensation location, type and strength
SEC subsystem	Setup stimulation sequence Deliver stimulation Collect and save pt response
# independent configurable channels	12
Max current amplitude	5 mA (step size: 5 uA)
Pulse duration	1-511 µs (step size: 1us)
Pulse waveform	Square-wave, mono or bi-hasic
Configuration	Each channel can be configured as anode or cathode

The TIME psychophysical testing platform will be used to control delivery of electrical stimulation and collection of the pt response.

The medical device life cyle / the supply chain

Within project life-time

Medical device design and prototype

- Development of HW & SW techology
- Collect components to prototype system

Validation and verification testing

- In-vivo validation animal experimentation
- In-vivo validation bench top testing

Preclinical and clinical trials

- N=1. Human clinical trial test of prototype system
- Small and large animal testing, acute and chronic testing

Exploitation strategy/analysis – brining the TIME prototype system to market

The medical device life cyle / the supply chain

(Pre-clinical and) Clinical trials

- Identify company to develop prototype system to product
- N= ?. Large scale clinical tests in humans
- Identification of /inclusion of multiple clinical test sites
- Marketing
- Compliance with standards (FDA, MDD, ISO 13485)
- Establishment of quality assurance

Regulatory approval and clearance

- Obtain CE-mark
- Regulatory approval/clearance
- Quality assurance

Postmarket activities

- Payment issues
- Quallity insurance
- Continuosus marketing
- Establishment of distributor network
- Clinical implant sites

Exploitation strategy/analysis – brining the TIME prototype system to market

PEST analysis: Where are the bottle-necks?

- CE-marking of all technologies
- All technologies need to be approved for human use
- Reimpursement/insurance issues
- Approval from competent authorities in each country

Political

Large scale clinical testing
 Solution for fully implanted system needed

Technological

- Financial support to develop product:
 - · CE-marking of all technologies
- **Economical**
- All technologies need to be approved for human use
- Reimpursement/insurance issues
- Approval from competent authorities in each country
- · Financial solution needed for
 - Introduction to market
 - Reimbursement/insurance issues

Social

Acceptance from end-user community

TIME

<u>Transverse</u>, <u>Intrafascicular Multichannel Electrode</u> system for induction of sensation and treatment of phantom limb pain in amputees

FP7 - ICT-2007.3.6 Micro/Nanosystems priority project number 224012

AALBORG UNIVERSI

