

N2L Summer School in NCSR "Demokritos" Athens, June 30 - July 10, 2008

"Methods in Micro - Nano Technology and Nanobiotechnology"

Organizer:

National Center for Scientific Research "Demokritos"

in collaboration with the

Foundation of Biomedical Research of the Academy of Athens and invited experts from other Nano2Life partners.

Information: www.imel.demokritos.gr

Target

- Modern Research takes advantage of Micro and Nanotechnology developments.
- Merging areas of research (Nanobiotechnology) demand interdisciplinary skills.
- Necessary for researchers from Life Sciences, Chemistry and Engineering to acquire skills in Micro and Nanotechnologies, nanomedicine.

Establish common language between the various disciplinespromote interdisciplinary research

The summer school offers: classroom and laboratory experience on: micro and nano-technology processes / materials / applications Targeted in: Nanobiotechnology, nanomedicine

Who should attend

Group leaders involved in molecular biology or biotechnology Post Doctoral Fellows, Graduate students with Life Science / Science / Engineering background, medical doctors All those who wish to apply micro-technology in their research

Maximum number of registrants persons: 20

Fees: N2L members:1000 Euro Others: 1400 Euro

(includes handouts, coffee-breaks, lunches, school dinner, two excursions, NO accommodation)

To encourage Greek participation Demokritos will grant partial scholarships to selected Greek participants upon request on the application form.

Deadlines: N2L May 7th - Others May 14th

Syllabus

Section 1: Principles of biochemistry, cell biology, physics and microelectronics.

1.1: Cell biology principles

1.2: Structure of biological macromolecules

1.3: Microelectronic Materials and Device Technology

1.4: Introduction to nanobiotechnology

Unit 2.1: Micro and Nano-fabrication science and technology

2.1.1 and 2.1.2: Patterning technologies

2.1.3: Patterning of biomolecules and other biological substances

2.1.4: Molecular bioelectronics

<u>Laboratory 2.1.1</u>: Fabrication of microfluidic devices on plastic substrates by

soft lithography

<u>Laboratory 2.1.2</u>: Fabrication of plastic microfluidic devices by Lithography and deep polymer plasma etching techniques

PMMA Capillarie

<u>Laboratory 2.1.3</u>: Electrical characterization of tunnelling devices based on organic molecules or biomolecules

<u>Unit 2.2</u>: Nanomaterials for bio-applications, Characterization, Imaging

2.2.1: Targeting RNA with small molecules: a Pharmaceutical Industry Study

2.2.2 and 2.2.3: Drug Delivery and Targeting Systems - Focus on Liposomes

2.2.4: Bioengineered nanomaterials

2.2.5: Magnetic nanoparticles for bioapplications

2.2.6: Biomimetic Materials Synthesis, Principles and Applications

2.2.7: Imaging with Scanning Probes (AFM, STM, SNOM)

2.2.8: Fluoresence imaging and 3D image visualization using confocal microscopy

<u>Laboratory 2.2.1</u>: Drug inclusion in cyclodextrins: monitoring in situ by NMR spectroscopy X-ray diffraction characterisation of drug inclusion and 3-D visualisation

<u>Laboratory 2.2.2</u>: Liposomes: preparation and characterisation by dynamic light scattering and ζ-potential

<u>Laboratory 2.2.3</u>: Video enhanced optical microscopy and Atomic Force
Microscopy of Liposomes

Atomic Force Microscopy Formation of DNA nanoparticles of ~40 nm diameter

PC-CHOL-ODPG/DHP Liprosmers,
PEG 5%
PEG 15%

Liposome-liposome interactions: Correlation of Optical Microscopy and Dynamic Light Scattering results

Laboratory 2.2.4: State of the art confocal microscopy of biological samples

Laboratory 2.2.5: Magnetic nanomaterials for bioapplications

Laboratory 2.2.6: Determining Magnetic Anisotropy at the Nanoscale

Unit 2.3: Molecular and Cellular biology and Applications

2.3.1: Gel-based protein analysis methods

2.3.2: Non-gel based protein analysis methods

2.3.3: Binding Assays and Immunosensors

2.3.4: DNA and Protein arrays: fabrication, detection and applications

2.3.5: Metabolomics in the Post-Genomic Era

2.3.6: Introduction into Bioinformatics

2.3.7: Applied Bioinformatics in BioNanoTechnology

Laboratory 2.3.1: Protein separation by two-dimensional electrophoresis

Laboratory 2.3.2: Mass spectrometry

<u>Laboratory 2.3.3</u>: Fabrication of protein microarrays using nanoplotter

Laboratory 2.3.4: Fabrication of protein microarrays using lithography

Laboratory 2.3.5: Fluorescence detection of protein arrays

Twelve rows of different protein spots fabricated in 12 succesive lithographic steps

Fluorescence picture of the rabbit γ -globulins and biotinylated-BSA spot arrays after a 2 h immunoreaction with a mixture of AF 546 labeled streptavidin (red spots) and AF 488 labeled anti-rabbit IgG antibody (green spots). The spot size is approximately 4 μ m.

Laboratory 2.3.6: Bioinformatics laboratory

Section 3: Towards Integrated Nanobiotechnology systems

3.1: Principles of Integrated Biosensing Devices

3.2: Lab on chip devices: Principles, applications, opportunities

3.3: Acoustic wave sensors: from device fabrication to biological applications

<u>Laboratory 3.1</u>: Operation of a lab-on-a-chip optical device using model assays and real time measurements

<u>Laboratory 3.2</u>: Demonstration of a capillary fluoroimmunosensor

